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Abstract. A quasiparticle-phonon coupling based on one quadrupole phonon is developed. The coupling is
constructed by using a deformed average field of Nilsson, a monopole pairing interaction and a quadrupole-
quadrupole force. Microscopic structure of the quadrupole phonon is given from the Tamm-Dancoff Ap-
proximation. The two effects of recoil and Coriolis forces are included with the assumption of a symmetric
rotational motion. Since theoretical treatment is performed for an odd-A nuclei the configuration of in-
trinsic states should contain both one-quasiparticle and quasiparticle-phonon components. This method is
applied to describe the level scheme of 133Nd for which an agreement with experimental data is obtained.
The results are also found similar to previous calculations obtained by the Particle plus Triaxial Rotor
Model.

PACS. 21.10.Hw Spin, parity, and isobaric spin – 21.10.Re Collective levels – 21.30.Fe Forces in hadronic
systems and effective interactions – 27.60.+j 90 ≤ A ≤ 149

1 Introduction

Over the last decade several experimental investigations
have been made for the low-lying states in A ∼ 130 mass
of transitional region. Most of these have given important
information about the characterization of both collective
and intrinsic excitations for odd-A nucleus (see for exam-
ple [1–3]). For transitional nuclei it is well known that the
level scheme is more complicated than that of spherical or
deformed nuclear shape. Usually, these types of nuclei are
dominated by a triaxial shape with moderate deformation
and softness. The softness with respect to the γ asymme-
try arises from the interplay of the valence protons and
neutrons occupying respectively low-lying and high-lying
Nilsson orbitals within the h11/2 j-shell [4].

Several models have been used to describe the level
scheme for the transitional nuclei. The most popular is
the Particle plus Triaxial Rotor Model (PRTM) [5]. It
was first used to give an interpretation of high-spin for
129,131Ce [6], 129Ba [7] and 125Ba [8] and it was recently
used at low-spin to treat 133Nd isotope [3,9]. With this
model, the intrinsic states in 133Nd have been identified
but their order and splitting of excited states were not
deduced as the same experimental arrangement. Another
model which is useful in the study of odd nuclei is the In-
teracting Boson Fermion Model (IBFM) [10]. By assuming
γ-softness a good result was obtained in the transitional
region, particularly for 125,127Xe [11], 127,129,131Ce [2] and
133Nd [9].

As an alternative to these models, we propose another
method based on the quasiparticle-phonon coupling. This
type of method has already been applied into treatment of
the excited states in odd-A nuclei by supposing spherical
[12–14] or deformed [15] shapes. However, as an attempt to
give a new description to the structure of the level scheme
in a transitional nucleus, we have limited our study to a
simple case where a microscopic picture is considered for
the quadrupole phonon by means of Tamm-Dancoff Ap-
proximation (TDA) [16]. This method is microscopic in
the sense that it provides two-quasiparticle structure of
the quadrupole vibrational core (γ-phonon) in contrast to
the phenomenological model [17] in which the question
of phonon structure is a priori excluded. Furthermore, it
has the feature of basing the description on the choice of
residual interaction. Thus, to obtain intrinsic states we
have used a deformed average field of Nilsson, a monopole
pairing and a quadrupole-quadrupole interaction [16]. The
states of rotational bands are determined by inclusion of
both recoil and Coriolis effects which came from a treat-
ment of the axially symmetric rotational motion.

Theoretical formulation of the total Hamiltonian has
been developed in Sect. 2 with a discussion of the intrin-
sic eigenvalue problem. In Sect. 3, the results of calcula-
tions are performed and compared to experimental data
in 133Nd which is taken as an example of typical nucleus
from the A ∼ 130 transitional region. Finally, in Sect. 4
some conclusions are drown.
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2 Description of the model

2.1 Outline of the total Hamiltonian

For the theoretical description of the low-lying states in
odd-A nuclei, we take the standard assumption that the
Hamiltonian can be separated into a rotational part and
an intrinsic motion. Thus we may write the total Hamil-
tonian as

H = Hrot +Hintr (1)

The Hrot is the collective kinetic energy associated with
the rotation of the nucleus as a whole and which is de-
scribed relative to the Laboratory system. The next term
Hintr includes the additional modes of excitation (individ-
ual and vibrational) and is treated relative to the intrinsic
system. This approach for an odd-A nucleus is related to a
system of an extra-nucleon coupled to an even-even core.
The physical idea behind the formulation of Hintr is the
belief that the intrinsic motion can be described in a rather
simple terms with a one-body deformed potential field Hsp

plus a two-body residual interaction composed by a short
range constant pairing force HP and a quadrupole part
HQ of the long range multipole-multipole force.

To write in more detail Hamiltonian (1), we start with
the kinetic energy of rotational motion which takes the
form

Hrot = A1R
2
1 +A2R

2
2 +A3R

2
3 (2)

here Rk is the component of the collective angular momen-
tum along the axis of the intrinsic system. The Ak is the
corresponding rotational parameter defined as Ak = ~2

2=k
with the moment of inertia parameter =k around the three
principal axis k = 1, 2, 3 of the nuclear mass distribution.

In (2) we have given a general triaxial form. However,
in this paper we limit our analysis to the case of a nucleon
coupled to an axially symmetric rotor [18]. The rotational
Hamiltonian can then be deduced by

Hrot =
~2

2=
(
R2

1 +R2
2

)
(3)

with the same moment of inertia = along the two axis
with k = 1, 2, and perpendicular to symmetric axis k =
3. The total angular momentum

→
I is composed of two

terms, the collective rotation of the core
→
R and the angular

momentum of the extra-nucleon
→
J ;
→
I=
→
R +

→
J . Since

→
I

is a conserved quantity,
→
R in (3) is replaced by

→
I and

→
J

so that the total Hamiltonian (1) will take the following
expression

H = Hintr +HI +HC (4)

where

Hintr = Hsp +HP +HQ +HJ

HI = AR
(
I2 − I2

3

)
HC = −AR (I+J− + I−J+)
HJ = AR

(
J2 − J2

3

)
(5)

with I± = I1 ± iI2 , J± = J1 ± iJ2 and AR = ~2

2= . The to-
tal Hamiltonian H is thus separated into three terms, the
intrinsic term Hintr, the rotational term HI and the Cori-
olis term HC which couples the intrinsic and rotational
motions.

The intrinsic Hamiltonian is more interesting from a
physical point of view. It is separated into four parts. The
first, Hsp, contains the deformed potential field which gov-
erns the independent motion of nucleons. In this sense, we
prefer to use the Nilsson harmonic oscillator model [19]
which is rather simple and is more performed to describe
a deformed nucleus. Using second quantization, Hsp takes
the simple form

Hsp =
∑
ντ

eντa
+
ντaντ (6)

a+
ντ (aντ ) is the operator that creates (destroys) a particle

of nucleon type τ (neutron or proton) in a Nilsson orbital
and with an energy eντ . The quantum number ν stands
for the asymptotic quantum numbers [Nn3l3] with the
projection Ων of the particle angular momentum along
the symmetric axis.

The term HP describes the monopole pairing interac-
tion [16] with the strength parameter Gτ and is written
as

HP = −
∑
νµτ

Gτa
+
ντa

+
−ντa−µτaµτ (7)

The next term HQ is the quadrupole-quadrupole force
[16] and is expressed by

HQ = −1
2
χ
∑
ττ ′

{
Q+

22 (τ)Q22 (τ ′) +Q+
2−2 (τ)Q2−2 (τ ′)

}
(8)

where the quadrupole moment of mass with γ = ±2 is
given as one-body interaction

Q2γ (τ) =
∑
νµ

〈
ντ
∣∣r2Y2γ

∣∣µτ〉 a+
ντaµτ (9)

The last term in (5) is the recoil force HJ . In many
earlier works HJ was neglected with the argument that it
could be absorbed in the independent nucleon motion of
the potential average field [20]. Here, we have chosen to
treat it in the same way as a residual interaction into the
intrinsic motion. By using second quantization, HJ can be
expressed as

HJ =
1
2
AR
∑
ττ ′

(J+ (τ)J− (τ ′) + J− (τ) J+ (τ ′)) (10)

where the one-body interaction of the intrinsic momentum
J± is written as

J± (τ) =
∑
νµ

〈ντ |J±|µτ〉 a+
ντaµτ (11)
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The term HI in (4) represents the kinetic energy in
the rotational motion and produces energy differences be-
tween states in a rotational band. The inclusion of the
Coriolis force HC requires the matrix of the model Hamil-
tonian H to be constructed and diagonalized within the
space of symmetrized functions [20].

|IMKρ〉 =

√
2I + 1
16π2

{
DI
MK |Kρ〉+ (−)I+K DI

M−K
∣∣Kρ

〉}
(12)

here ρ is the quantum number of a given intrinsic states
with a projection K of the intrinsic angular momentum
along the symmetric axis.

∣∣Kρ

〉
is the time reversal of an

intrinsic state |Kρ〉 which can be obtained by resolution
of the secular problem

Hintr |Kρ〉 = (Hsp +HP +HQ +HJ) |Kρ〉 = EintrKρ |Kρ〉
(13)

As it is well Known, DI
MK is the rotational matrix and

is an eigenfunction of I2 and I3 with respective eigenvalue
I (I + 1) and K. Thus, a diagonalization of H within the
basis states (12) requires essentially to determine the ma-
trix element of the Coriolis term HC〈

IMK ′ρ′ |HC | IMKρ

〉
=

−AR{(−)I+
1
2 (I + 1

2 )
〈
K ′ρ′ |J+|Kρ

〉
δK′ 12 δK

1
2

+
√

(I ∓K) (I ±K + 1)
〈
K ′ρ′ |J±|Kρ

〉
δK′,K±1}(14)

As we can see from the above equations, the solutions
must be obtained in a two-step process. First, the intrin-
sic eigenvalue equation (13) when solved gives a set of
intrinsic states |Kρ〉 and intrinsic energies EintrKρ

. From
these states, different rotational wave functions of the form
given in (12) are constructed. Then in a second step, a di-
agonalization of the Coriolis term is performed.

2.2 The intrinsic Hamiltonian

To discuss the different terms in the intrinsic eigenvalue
equation (13) we must first look for a possible solution of
the system. By neglecting HJ and HQ we have a model
which describes an independent nucleon motion in a Nils-
son deformed potential and where is added the pairing
correlations. The BCS approximation is adopted so as to
transform the system to an independent quasiparticle mo-
tion. The long range interaction of quadrupole type HQ

is introduced so to account for the dynamical mode of
deformation or the vibrational excitation. We work in the
frame of Tamm-Dancoff approximation in order to make a
microscopic structure description for the γ-phonon state.
Our intrinsic Hamiltonian will contain also a residual part
of the rotational motion by retaining the recoil force HJ

which is independent in regard to the total angular mo-
mentum

→
I .

The BCS method is an approximate approach to treat
pairing correlation by using the Bogoliubov-Valatin trans-
formation which makes change from particle to quasipar-
ticle operators

a+
σντ = uντα

+
σντ + σvντα−σντ (15)

here the operator α+
σντ (ασντ ) creates (destroys) a quasi-

particle in state |σντ〉 with a σ-sign depending to time re-
versal symmetry. The expression deduced from Hsp +HP

is given by

HBCS = U +
∑
σντ

Eντα
+
σντασντ (16)

where U is the BCS ground state energy (|BCS〉 ≡ |−〉)
and Eντ is the energy of single quasiparticle

Eντ =
√

(eντ − λ−Gτv2
ντ )2 +∆2

τ (17)

with the Lagrange multiplicator λ and the energy gap ∆τ .
In the same way, the transformation (15) allows the

expression of quadrupole (9) and intrinsic (11) moments
to change into form of quasiparticle terms

Q2γ (τ) =
∑

σσ′=±1,νν′

Gγ,τσνσ′ν′α
+
σντασ′ν′τ

−1
2

∑
σσ′=±1,νν′

(
σ′F γ,τσν−σ′ν′α

+
σντα

+
σ′ν′τ

+σF γ,τ−σνσ′ν′ασντασ′ν′τ
)

(18)

with

Gγ,τσνσ′ν′ = (uντuν′τ − vντvν′τ )
〈
σντ

∣∣r2Y2γ

∣∣σ′ν′τ〉 (19)

F γ,τσνσ′ν′ = (uντvν′τ + vντuν′τ )
〈
σντ

∣∣r2Y2γ

∣∣σ′ν′τ〉 (20)

and

J± (τ) =
∑

σσ′=±1,νν′

M±,τσνσ′ν′α
+
σντασ′ν′τ

−1
2

∑
σσ′=±1,νν′

(
σ′N±,τσν−σ′ν′α

+
σντα

+
σ′ν′τ

−σN±,τ−σνσ′ν′ασντασ′ν′τ
)

(21)

with

M±,τσνσ′ν′ = (uντuν′τ + vντvν′τ ) 〈σντ |J±|σ′ν′τ〉 (22)

N±,τσνσ′ν′ = (uντvν′τ − vντuν′τ ) 〈σντ |J±|σ′ν′τ〉 (23)

By introducing these new expressions respectively in
(8) and (10), the quadrupole and the recoil forces can be
decomposed as in the form H00 + H11 + H20 + H22 +
H31 +H40 [16] where the subscript refer to the number of
quasiparticle creation and annihilation operators. In this
picture, we note that both one-body and two-body inter-
actions should be considered.

In the frame of Tamm-Dancoff Approximation [16] the
creation operator of γ-phonon is defined as

B+
γ =

1
2

∑
νµτ

(
Xτ
γ

)
νµ
α+
ντα

+
µτ (24)
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This expression permits a microscopic structure descrip-
tion for the quadrupole vibrational core (γ-phonon state)
by showing the X-amplitudes which are related to two-
quasiparticle excitations.

2.3 The intrinsic eigenvalue problem in odd-A nuclei

The resolution of (13) for an odd-A nucleus is per-
fected by a diagonalization within a basis formed by one-
quasiparticle states (1-qp) and quasiparticle-phonon cou-
pling states (qp-Phγ). If we retain only the terms that do
not have a zero matrix element within the states of this
basis, the intrinsic Hamiltonian is then reduced to

Hintr = HBCS +HQ
11 +HQ

20 +HQ
22 +HQ

31 +HJ
11

+HJ
20 +HJ

22 +HJ
31 +H

′P
22 (25)

The Q and J Terms are related respectively to quadrupole
and recoil forces. The last term H

′P
22 is a residual pairing

interaction which was neglected in BCS approximation.
The interaction between two 1-qp states and two qp-

Phγ states are given respectively by L11 and L22 matrix
elements and that between 1-qp and qp-Phγ states by L31.
They are written as follows (detailed expressions are given
in the Appendix)

L11 =
〈
−
∣∣∣αk′τ (HBCS +HQ

11 +HJ
11

)
α+
kτ

∣∣∣−〉 (26)

L22 =
〈
−
∣∣∣Bγ′αk′τ (HBCS +HQ

11 +HJ
11

+HQ
22 +HJ

22 +H
′P
22

)
α+
kτB

+
γ

∣∣∣−〉 (27)

L31 =
〈
−
∣∣∣Bγαk′τ (HQ

20 +HJ
20 +HQ

31 +HJ
31

)
α+
kτ

∣∣∣−〉
(28)

The eigenvalue problem is written in matrix form(
L11 L31

L31 L22

)(
Cρk
Dρ
kγ

)
= EintrKρ

(
Cρk
Dρ
kγ

)
(29)

in which Cρk represents the 1-qp component and Dρ
kγ the

qp-Phγ component. The intrinsic eigenvalue EintrKρ
corre-

sponds to the eigenvector

|Kρ〉 =

(∑
ν

Cρν δKΩνα
+
ντ +

∑
νγ

Dρ
νγδK=Ων+γα

+
ντB

+
γ

)
|−〉

(30)

The overlap between the 1-qp and the qp-Phγ states
is always zero. However, the overlap between two different
qp-Phγ states can be non-zero so as they can form a non-
orthogonal basis set

Sij = < i|j >=
〈
−
∣∣Bγ′αiα+

j B
+
γ

∣∣−〉
= δijδγ′γ −

∑
λ

(Xγ′)jλ (Xγ)iλ (31)

where |i〉 is the qp-Phγ state. To solve this rather eigen-
value problem we adopt the method where we first solve
the eigenvalue equation for the Sij overlap matrix∑

j

Sijw
h
j = nhw

h
i (32)

the eigenvectors obtained can be written in the basis {|i〉}
as ∣∣∣∼i〉 = 1√

nh

∑
i

whi |i > (33)

They have the propriety of being mutually orthogonal,
have a norm equal to unity and form a complete set. With
these new states we construct an orthogonal complete ba-
sis
{
α+
j |−〉 ,

∣∣∣∼i〉} in which the matrix element of Hintr

is diagonalized. The intrinsic wave function contains then
two kinds of amplitudes Cρj for 1-qp and gρh for normalized

qp-Phγ
∣∣∣∼i〉. The amplitudes Dρ

ν in (30) are then calcu-
lated from the g-amplitudes in the following way

Dρ
ν =

∑
h

1√
nh
gρhw

h
ν (34)

3 Results and discussions

The theoretical calculations are performed for 133Nd
which has recently been most investigated at low and
high-spin [3,9]. The eigenvalue problem (29) is solved and
the intrinsic energies Eintrν with the corresponding am-
plitudes Cν and Dν are obtained by using the following
set of parameters. For the Nilsson deformed average field,
the last parametrization [21] adapted for the transitional
region around the mass A = 130 is used. Deformation
parameter for the even-even core 132Nd is taken equal
to ε2 = 0.267 [22]. Twenty Nilsson orbitals positioned
equally below and above the Fermi level are considered
in the BCS calculation. The pairing gap are fixed for
proton and neutron by the well known phenomenologi-
cal relation ∆p = ∆n = 12√

A
[23]. The inertia parame-

ter is obtained by using the phenomenological relation of
Grodzins

(
ε2

2 ≈ 11176
[
A7/3(6 ~

2= )
]−1
)

[24]. The parame-
ter of quadrupole force χ is fitted so as to reproduce the
experimental energy of quadrupole vibrational core, for
132Nd : E2+

γ
= 824 KeV . We take to note that since our

method based upon quasiparticle-phonon coupling is mi-
croscopic without any free adjustable parameters for odd
nuclei (all parameters are given by the even-even core), the
intrinsic energies obtained are not expected to approach
exactly the experimental values. Some discrepancies must
also be expected because we have limited our study to
only γ-phonon excitation by neglecting the other multi-
pole modes of vibration (β-phonon, g-phonon, ...) and the
multiphonon correlations which may be important in some
nuclei from the transitional region [25].

We refer to Fig. 1 in order to demonstrate the contribu-
tion of each term in the intrinsic Hamiltonian (25) for the
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Fig. 1. Energy evolution of intrinsic states in 133Nd caused by including successive interaction terms of quadrupole and recoil
forces to the initial pairing interaction

Table 1. Energy (≤ 1 MeV ) and structure of intrinsic states in 133Nd

Energy, KeV Structure
Kπ Exp. Th. 1-qp Ck qp-Phγ Dk

7/2+ 0 0 7/2+[404] 0.94 3/2+[402] +Q22 −0.32
1/2+ 128 153 1/2+[411] 0.89 3/2+[411] +Q2−2 0.31

5/2+[413] +Q2−2 0.31
3/2+ — 293 3/2+[402] 0.77 1/2+[400] +Q2−2 0.40

7/2+[404] +Q2−2 −0.55
5/2+ 291 316 5/2+[402] 0.93 1/2+[400] +Q22 −0.22

5/2+[413] −0.12 9/2+[404] +Q2−2 0.20
1/2+ — 402 1/2+[400] 0.83 3/2+[402] +Q2−2 −0.57
1/2− — 484 1/2−[541] 0.96 3/2−[532] +Q2−2 −0.13

1/2−[530] −0.21
7/2− — 714 7/2−[523] 0.99 3/2−[541] +Q22 0.11
5/2+ — 758 5/2+[413] 0.65 1/2+[411] +Q22 0.74

5/2+[402] 0.14
3/2+ — 845 3/2+[411] −0.57 1/2+[411] +Q2−2 0.82
9/2− — 856 9/2−[514] 0.99

energy evolution of intrinsic states (assigned by the dom-
inant one-quasiparticle configuration or Nilsson orbital)
and which are positioned near the Fermi level in 133Nd iso-
tope. Here, we can see that by adding quadrupole and re-
coil forces to pairing interaction a new arrangement of in-
trinsic energies is obtained. Thus, for the quadrupole force
we notice that both two-body and one-body terms exhibit
important interaction for positive parity states than neg-
ative parity ones. The influence is so high as states have
a small spin. This situation changes with the recoil force
which preferentially influences the negative parity states.
The effect due to the last term H

′P
22 in (25) is in general

small.
The results of calculations obtained by consider-

ing all terms of the intrinsic Hamiltonian are given in

Table 1. The low-lying intrinsic states in 133Nd with a
calculated energy up to 1 MeV are presented. Only com-
ponents Cν or Dν which contribution to the normalization
of wave function is more than 1 % are shown. The calcu-
lated energy position reproduce the observed positive par-
ity bandhead. Also, an important contribution from the
quasiparticle-phonon coupling is established for the con-
figuration of positive parity wave functions. However, for
the negative parity wave function, the configuration indi-
cate a large component related to only a one-quasiparticle
excitation. One can then consider the negative parity in-
trinsic states in 133Nd as been a pure one-quasiparticle
excitation without any contribution from the vibrational
excitation mode.
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The construction and diagonalization of the total
Hamiltonian matrix are performed by using the basis func-
tion (12). The energies and wave functions of rotational
bands based upon the dominant intrinsic states are deter-
mined for each value of the total angular momentum and
parity.

A comparison of the experimental spectrum with en-
ergy levels obtained from the Coriolis-mixing calculations
in 133Nd is shown in Fig. 2. Although, the structure of
intrinsic states is given by two components - the domi-
nant one-quasiparticle component and the quasiparticle-
phonon component - it is the first of these that provides a
direct matching to the experimental bands. This is a par-
ticularly simple process since bands in 133Nd have already
been assigned by the dominant Nilsson configuration on
the basis of experimental properties [3], systematic of the
region and comparison with calculations [9]. The results
obtained by our calculations agree with the previous as-
signments and reproduce well the experimental energy po-
sition. We give in the following an analysis of the structure
related to each band.

The band 7/2+ [404] is the ground state band. Its ro-
tational structure agrees well with experimental data and
with PTRM description [9] obtained by assuming a large
triaxiality (γ = −22◦). Triaxiality with static deforma-
tion or softness with dynamic deformation (assumed by
the quasiparticle-phonon coupling) appears as an excellent
description that can be given for 133Nd, in particularly for
the ground state band.

The 1/2+, 3/2+, 5/2+, ... band is a mixed s1/2 + d3/2

structure as found in the IBFM calculations [9]. More
precisely, it is assigned by our method as dominated by
1/2+ [411] and their states are determined in agreement
with PTRM calculation as mixture of the two intrinsic
states 1/2+ [411] and 1/2+ [400]. In this band, the Coriolis
interaction have caused an energy rapprochement between
the neighboring excited levels (1/2+ and 3/2+), (5/2+ and
7/2+), ... The same effects were also established by PTRM
results with γ = −22◦. We have presented in Fig. 2 two
bands without any comparison with experimental data.
These bands are assigned respectively by one dominant
intrinsic state 3/2+ [402] and 1/2+ [400] and have low en-
ergy positions. They may be candidates to an eventual
identification for several positive parity levels that have
not yet a well specification of experimental spin [3].

The band dominated by the intrinsic state 5/2+ [402]
reproduces well the experimental band structure. The
agreement indicates a favor contribution coming from in-
clusion of quadrupole force and both recoil and Coriolis
interactions. This contribution has allowed to deduce the
energy position of the bandhead Kπ = 5/2+ relatively to
the ground state Kπ = 7/2+ (see Fig. 1) and to determine
the regularity of excited energy levels as seen in Fig. 2.

The negative parity structure assigned by 1/2− [541]
indicates an energy shift of the excited level Iπ = 3/2−
under the bandhead Kπ = 1/2−. The calculated energy
of excited levels agrees well with those positions reported
in [3]. Furthermore, a level with spin 1/2− was recently
observed at energy E1/2+ = 387 KeV above the level

Table 2. Calculated energies (KeV ) and Coriolis-mixing am-
plitudes of the negative parity 7/2−[523] band in 133Nd

Iπ ETh. 5/2−[532] 7/2−[523] 9/2−[514] 11/2−[505]

7/2− 646 4.4% 95.0% – –
9/2− 570 4.2% 52.6% 42.5% –
11/2− 683 6.1% 51.4% 40.2% 1.0%
13/2− 874 7.9% 50.5% 38.0% 1.8 %

3/2−(E3/2+ = 354 KeV ) [9]. This structure is then well
established in 133Nd as been a decoupled band dominated
by the intrinsic state 1/2− [541].

By assuming a large triaxiality [9], the 9/2−, 11/2−,
13/2−, .... band has been identified as a mixture of intrin-
sic orbitals from the intruder h11/2 neutron j-shell with a
dominant 9/2− [514] component. But in our calculations
we have found that it is more dominated by 7/2− [523]
state. The Coriolis-mixing components for this negative
parity band are given in Table 2. One can see an equiv-
alent mixing between the two intrinsic states 7/2− [523]
and 9/2− [514] for the excited levels that have a spin
Iπ ≥ 9/2−. Only the level Kπ = 7/2− has a pure configu-
ration 7/2− [523] and is determined at an energy position
above the excited state Iπ = 9/2−. The level Kπ = 7/2−
has never been observed experimentally for 133Nd but the
existence of a similar one has recently been confirmed in
the neighboring isotone 131Ce [2]. Furthermore, in Fig. 2
appear a disagreement between the calculated 7/2− [523]
band and the experimental energy levels. It is caused by
the high relative energy of the calculated intrinsic state
(or bandhead). However, as seen in Fig. 1 the two intrinsic
states 7/2− [523] and 9/2− [514] are less influenced by the
quadrupole force and only the one-body interaction from
the recoil force contributes significantly to their energy
positions. The assumption that they can be considered as
one-quasiparticle intrinsic states allows to adopt the possi-
bility of neglecting the recoil term in the resolution of the
intrinsic eigenvalue problem. In order to examine the influ-
ence of adding or neglecting recoil and/or Coriolis forces
into the treatment of 7/2− [523] band, we have reported
in Fig. 3 the evolution of relative energy obtained by four
independent calculation cases. From this, it is clear that
by neglecting the recoil force and including the Coriolis
interaction the arrangement obtained reproduces better
the experimental data but it can not resolve entirely the
splitting of energy position.

4 Conclusions

In this work, we have added to pairing interaction the
quadrupole and recoil forces so as to construct an intrin-
sic Hamiltonian having the ability of considering all terms
of residual interactions. This method has been developed
with the attention to give a microscopic description for
the low-lying states of odd-A nuclei. The influence of
quadrupole and recoil interactions to reproduce energy ar-
rangement of intrinsic states has been presented. We have
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Fig. 2. Comparison of experimental levels of 133Nd with the calculated excited states obtained by the quasiparticle-phonon
coupling method plus recoil and Coriolis forces. (experimental assignments are conform to that given in [3])

Fig. 3. Calculations of excited states for the col-
lective structure built upon negative parity intrin-
sic state 7/2− [523]. (a) with only rotation relation
AR(I(I + 1) − K2). (b) with rotation plus recoil
force. (c) with rotation plus both recoil and Cori-
olis forces. (d) with rotation and Coriolis force, no
recoil

shown for 133Nd that the contribution of quasiparticle-
phonon coupling is more important for positive parity
states than negative parity ones. At low-spin the excited
states have been obtained by including the Coriolis mixing
force. The calculations of negative parity rotational struc-
ture built upon the intrinsic state 7/2− [523] have been
revised by neglecting the recoil force.

Using this quasiparticle-phonon coupling method we
have analyzed the low-lying excited levels in 133Nd. We
have confirmed some parity and experimental spin assign-
ments and predict two new bands. In general our results

agree also with previous calculations, particularly those
obtained with the Particle plus Triaxial Rotor Model.
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Appendix

Detailed expressions of L-matrix elements are written for
each interaction term of the intrinsic Hamiltonian (see
(25)).

Between two one-quasiparticle states, the L11 matrix
elements are given by

(
HBCS

)
11

= Ekτδk′k (A1)

(
HQ

11

)
11

= +χ
2

∑
λ

(
F 2τ
k′λF

2τ
kλ + F 2τ

λk′F
2τ
λk

−G2τ
k′λG

2τ
kλ −G2τ

λk′G
2τ
λk

)
(A2)

(
HJ

11

)
11

= −AR2
∑
λ

(
N+τ
k′λN

+τ
kλ +N+τ

λk′N
+τ
λk

−M+τ
k′λM

+τ
kλ −M+τ

λk′M
+τ
λk

)
(A3)

Between two quasiparticle-phonon states, the L22 ma-
trix elements are given by

(HBCS)22 = Ekτδk′kδγ′γ

−
∑
λ

(Ek′τ+Ekτ+Eλτ )(Xτ
γ′)kλ(Xτ

γ )k′λ

+
∑
νλt

Eνt(Xt
γ′)νλ(Xt

γ)νλδk′k (A4)

(HQ
11)22 =

1
2
χ
∑
λ

(F 2τ
kλF

2τ
k′λ+F 2τ

λkF
2τ
λk′−G2τ

kλG
2τ
k′λ−G2τ

λkG
2τ
λk′)δγ′γ

−1
2
χ
∑
νµλ

(F 2τ
kν F

2τ
µν +F 2τ

νkF
2τ
νµ−G2τ

kνG
2τ
µν−G2τ

νkG
2τ
νµ)

· (Xτ
γ′)µλ(Xτ

γ )k′λ

−1
2
χ
∑
νµλ

(F 2τ
µνF

2τ
k′ν+F 2τ

νµF
2τ
νk′−G2τ

µνG
2τ
k′ν−G2τ

νµG
2τ
νk′)

· (Xτ
γ′)kλ(Xτ

γ )µλ

−1
2
χ
∑
νµλ

(F 2τ
νλF

2τ
µλ+F 2τ

λνF
2τ
λµ−G2τ

νλG
2τ
µλ−G2τ

λνG
2τ
λµ)

· (Xτ
γ′)kµ(Xτ

γ )k′ν

+
1
2
χ
∑
νµλht

(F 2t
νhF

2t
µh+F 2t

hνF
2t
hµ−G2t

νhG
2t
µh−G2t

hνG
2t
hµ)

· (Xt
γ′)µλ(Xt

γ)νλδk′k
(A5)

(HJ
11)22 =

−1
2
AR
∑
λ

(N+τ
kλN

+τ
k′λ+N+τ

λkN
+τ
λk′

−M+τ
kλM

+τ
k′λ−M+τ

λkM
+τ
λk′)δγ′γ

+
1
2
AR
∑
νµλ

(N+τ
kνN

+τ
µν+N+τ

νkN
+τ
νµ−M+τ

kνM
+τ
µν−M+τ

νkM
+τ
νµ)

· (Xτ
γ′)µλ(Xτ

γ )k′λ

+
1
2
AR
∑
νµλ

(N+τ
µνN

+τ
k′ν+N+τ

νµN
+τ
νk′−M+τ

µνM
+τ
k′ν−M+τ

νµM
+τ
νk′)

· (Xτ
γ′)kλ(Xτ

γ )µλ

+
1
2
AR
∑
νµλ

(N+τ
νλN

+τ
µλ+N+τ

λνN
+τ
λµ−M+τ

νλM
+τ
µλ−M+τ

λνM
+τ
λµ)

· (Xτ
γ′)kµ(Xτ

γ )k′ν

−1
2
AR

∑
νµλht

(N+t
νhN

+t
µh+N+t

hνN
+t
hµ−M+t

νhM
+t
µh−M+t

hνM
+t
hµ)

· (Xt
γ′)µλ(Xt

γ)νλδk′k
(A6)

(HQ
22)22 =

−χ
∑
νµλ

(F 2τ
k−νF

2τ
k′−µ+F 2τ

−νkF
2τ
−µk′)(X

τ
γ′)µλ(Xτ

γ )νλ

−1
2
χ
∑
νµλt

(F 2τ
k−νF

2t
λ−µ+F 2τ

−νkF
2t
−µλ)

· (Xt
γ′)µλ(Xτ

γ )k′νσνσµ

−1
2
χ
∑
νµλt

(F 2τ
k′−νF

2t
λ−µ+F 2τ

−νk′F
2t
−µλ)

· (Xτ
γ′)kν(Xt

γ)µλσνσµ

−1
4
χ
∑

νµλht′t

(F 2t
h−νF

2t′

λ−µ+F 2t
−νhF

2t′

−µλ)

· (Xt
γ′)hν(Xt′

γ )λµσνσµδk′k

+χ
∑
νµλ

(G2τ
kµG

2τ
k′ν+G2τ

µkG
2τ
νk′)(X

τ
γ′)µλ(Xτ

γ )νλ

+χ
∑
νµλ

(G2τ
kµG

2τ
λν+G2τ

µkG
2τ
νλ)(Xτ

γ′)µλ(Xτ
γ )k′ν

+χ
∑
νµλ

(G2τ
k′µG

2τ
λν+G2τ

µk′G
2τ
νλ)(Xτ

γ′)kν(Xτ
γ )µλ

+
1
2
χ
∑
νµλht

(G2t
hµG

2t
λν+G2t

µhG
2t
νλ)(Xt

γ′)hν(Xt
γ)λµδk′k

(A7)
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(HJ
22)22 =

AR
∑
νµλ

(N+τ
k−µN

+τ
k′−ν+N+τ

−µkN
+τ
−νk′)(X

τ
γ′)νλ(Xτ

γ )µλ

−AR
∑
νµλ

(M+τ
kνM

+τ
k′µ+M+τ

νkM
+τ
µk′)(X

τ
γ′)νλ(Xτ

γ )µλ

−AR
∑
νµλ

(M+τ
kµM

+τ
λν+M+τ

µkM
+τ
νλ)(Xτ

γ′)µλ(Xτ
γ )k′ν

−AR
∑
νµλ

(M+τ
k′µM

+τ
λν+M+τ

µk′M
+τ
νλ)(Xτ

γ′)kν(Xτ
γ )µλ

−1
2
AR

∑
νµλht

(M+t
hνM

+t
λµ+M+t

νhM
+t
µλ)(Xt

γ′)hµ(Xt
γ)λνδk′k

(A8)

(H
′P
22 )22 =

2Gτukτvkτuk′τvk′τ
∑
λ

(Xτ
γ′)kλ(Xτ

γ )k′λ

+2Gτ (ukτvkτ+uk′τvk′τ )
∑
λ

uλτvλτ (Xτ
γ′)kλ(Xτ

γ )k′λ

−2Gτukτvkτ
∑
νλ

uλτvλτ (Xτ
γ′)λν(Xτ

γ )λνδk′k

−
∑
νλt

Gtuνtvνtuλtvλt(Xt
γ′)λν(Xt

γ)λνδk′k (A9)

Between one-quasiparticle and quasiparticle-phonon
states, the L31 matrix elements are given by

(HQ
20)31 =

1
2
χ
∑
νµ

(F 2τ
k′νG

2τ
−µν+G2τ

k′νF
2τ
−µν

+F 2τ
νk′G

2τ
ν−µ+G2τ

νk′F
2τ
ν−µ)(Xτ

γ )µkσµ (A10)

(HJ
20)31 =

1
2
AR
∑
νµ

(N+τ
k′νM

+τ
−µν+M+τ

k′νN
+τ
−µν

−N+τ
νk′M

+τ
ν−µ−M+τ

νk′N
+τ
ν−µ)(Xτ

γ )µkσµ (A11)

(HQ
31)31 = χ

∑
νµ

(G2τ
kµF

2τ
k′−ν+G2τ

µkF
2τ
−νk′)(X

τ
γ )νµσν

+
1
2
χ
∑
νµ

(G2τ
kk′F

2τ
ν−µ+G2τ

k′kF
2τ
−µν)

· (Xτ
γ )νµσµ (A12)

(HJ
31)31 =−AR

∑
νµ

(M+τ
kµN

+τ
k′−ν−M+τ

µkN
+τ
−νk′)

· (Xτ
γ )νµσν (A13)

The intrinsic matrix element
〈
K ′ρ′ |J+|Kρ

〉
in (14) can

be obtained by substituting the wave function (30). The
deduced expression is written as

〈
K ′ρ′ |J+|Kρ

〉
=∑

νµ

Cρ
′

µ C
ρ
ν δk′ΩµδkΩν

〈
−
∣∣αµτJ+α+

ντ

∣∣−〉
+
∑
νµγ′

Dρ′

µγ′C
ρ
ν δk′=Ωµ+γ′δkΩν

〈
−
∣∣Bγ′αµτJ+α+

ντ

∣∣−〉
+
∑
νµγ

Cρ
′

µ D
ρ
νγδk′Ωµδk=Ων+γ

〈
−
∣∣αµτJ+α+

ντB
+
γ

∣∣−〉
+
∑
νµγγ′

Dρ′

µγ′D
ρ
νγδk′=Ωµ+γ′δk=Ων+γ

〈
−
∣∣Bγ′αµτJ+α+

ντB
+
γ

∣∣−〉
(A14)

where 〈
−
∣∣αµτJ+α+

ντ

∣∣−〉 = M+τ
µν (A15)

〈
−
∣∣Bγ′αµτJ+α+

ντ

∣∣−〉 =
∑
λ

N+τ
µ−λ(Xτ

γ′)νλσλ (A16)

〈
−
∣∣αµτJ+α+

ντB
+
γ

∣∣−〉 =
∑
λ

N+τ
−λν(Xτ

γ )λµσλ (A17)

〈
−
∣∣Bγ′αµτJ+α+

ντB
+
γ

∣∣−〉 =

M+τ
µνδγ′γ−

∑
λh

M+τ
hν(Xτ

γ′)hλ(Xτ
γ )µλ

−
∑
λh

M+τ
µh(Xτ

γ′)νλ(Xτ
γ )hλ−

∑
λh

M+τ
hλ(Xτ

γ′)hν(Xτ
γ )λµ

(A18)
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